3,985 research outputs found

    ATLAS physics performance and commissioning

    Get PDF
    ATLAS, one of the two multi-purpose detectors at the proton-proton collider LHC, is scheduled to start taking data in 2007. This paper presents the physics performance of this experiment in studying one of the main topics of the LHC physics : the Higgs search. The use of the first data for the detector commissioning and the physics measurements that can be done in the early phase of the LHC operation are also reviewed

    Uniformity of the 2000 test beam module with the new optimal filtering coefficients

    Get PDF
    An original method to reconstruct electron and pion signals in the Liquid ARGon barrel calorimeter (LARG) is applied to test beam data collected at the H8 line of the CERN North Area in July and August 2000. The method is based on the use of optimal filtering coefficients and takes into account the electrical description of the read-out electronics in the reconstruction of the physics pulses. Results on improvements in the LARG response and in particular on the energy uniformity of the calorimeter are shown

    Uniformity Of The 2000 Test Beam Module With The New Optimal Filtering Coefficients

    Get PDF
    An original method to reconstruct electron and pion signals in the Liquid ARGon barrel calorimeter (LARG) is applied to test beam data collected at the H8 line of the CERN North Area in July and August 2000. The method is based on the use of optimal filtering coefficients and takes into account the electrical description of the read-out electronics in the reconstruction of the physics pulses. Results on improvements in the LARG response and in particular on the energy uniformity of the calorimeter are shown

    A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    The standard model of particle physics1-4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5-9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons-the carriers of the strong, electromagnetic and weak forces-are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (Ď„)) are well measured and indications of interactions with a second-generation particle (muons, ÎĽ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model

    The fusion of external and internal 3D photogrammetric models as a tool to investigate the ancient human/cave interaction:The La Sassa case study

    Get PDF
    Caves have been used by humans and animals for several thousand years until present but, at these time scales, their structures can rapidly change due to erosion and concretion processes. For this reason, the availability of precise 3D models improves the data quality and quantity allowing the reconstruction of their ancient appearance, structure and origin. However, caves are usually characterised by lack of light, high percentage of relative humidity, narrow spaces and complex morphology. Thus, quite often the traditional topographic instruments cannot be employed. In the La Sassa cave (Sonnino, Italy) a huge deposit ranging from Pleistocene to the Second World War has been found and stratigraphic evidence suggested that the shape of the cave and its entrance might have been different. In this paper, the fusion of the internal and external 3D photogrammetric models of the La Sassa, made to support the archaeological excavations, is presented, A Nikon camera with a fisheye lens and a smartphone camera have been used to survey the internal part of the cave, while an aerial drone has been employed for the external area. The two models have been georeferenced and scaled using GCPs acquired by a double frequency GNSS (GPS and GLONASS) receiver. A low-resolution DTM derived from a previous aerial laser scanning survey and the 3D models have been elaborated in CloudCompare environment to highlight the complete morphology of the cave and its surroundings

    Comparative analysis of biochip mosaic-based indirect immunofluorescence with enzyme-linked immunosorbent assay for diagnosing myasthenia gravis

    Get PDF
    Background: The detection of anti-acetylcholine receptor (AChR) and anti-muscle-specific tyrosine kinase (MuSK) antibodies is useful in myasthenia gravis (MG) diagnosis and management. BIOCHIP mosaic-based indirect immunofluorescence is a novel analytical method, which employs the simultaneous detection of anti-AChR and anti-MuSK antibodies in a single miniature incubation field. In this study, we compare, for the first time, the BIOCHIP MG mosaic with conventional enzyme-linked immunosorbent assay (ELISA) in the diagnosis of MG. Methods: A total of 71 patients with MG diagnosis were included in the study. Anti-AChR and anti-MuSK antibodies were measured separately by two different ELISA and simultaneously by BIOCHIP. The results were then compared. Results: The overall concordance between ELISA and BIOCHIP for anti-AChR reactivity was 74%. Cohen’s kappa was 0.51 (95% CI 0.32–0.71), which corresponds to 90% of the maximum possible kappa (0.57), given the observed marginal frequencies. The overall concordance for anti-MuSK reactivity was 84%. Cohen’s kappa was 0.11 (95% CI 0.00–0.36), which corresponds to 41% of the maximum possible kappa (0.27). Conclusion: The overall concordance among assays is not optimal

    THE FUSION of EXTERNAL and INTERNAL 3D PHOTOGRAMMETRIC MODELS AS A TOOL to INVESTIGATE the ANCIENT HUMAN/CAVE INTERACTION: The la SASSA CASE STUDY

    Get PDF
    Caves have been used by humans and animals for several thousand years until present but, at these time scales, their structures can rapidly change due to erosion and concretion processes. For this reason, the availability of precise 3D models improves the data quality and quantity allowing the reconstruction of their ancient appearance, structure and origin. However, caves are usually characterised by lack of light, high percentage of relative humidity, narrow spaces and complex morphology. Thus, quite often the traditional topographic instruments cannot be employed. In the La Sassa cave (Sonnino, Italy) a huge deposit ranging from Pleistocene to the Second World War has been found and stratigraphic evidence suggested that the shape of the cave and its entrance might have been different. In this paper, the fusion of the internal and external 3D photogrammetric models of the La Sassa, made to support the archaeological excavations, is presented, A Nikon camera with a fisheye lens and a smartphone camera have been used to survey the internal part of the cave, while an aerial drone has been employed for the external area. The two models have been georeferenced and scaled using GCPs acquired by a double frequency GNSS (GPS and GLONASS) receiver. A low-resolution DTM derived from a previous aerial laser scanning survey and the 3D models have been elaborated in CloudCompare environment to highlight the complete morphology of the cave and its surroundings

    Averaging lifetimes for B hadron species

    Get PDF
    The measurement of the lifetimes of the individual B species are of great interest. Many of these measurements are well below the 10 %\% level of precision. However, in order to reach the precision necessary to test the current theoretical predictions, the results from different experiments need to be averaged. Therefore, the relevant systematic uncertainties of each measurement need to be well defined in order to understand the correlations between the results from different experiments. \par In this paper we discuss the dominant sources of systematic errors which lead to correlations between the different measurements. We point out problems connected with the conventional approach of combining lifetime data and discuss methods which overcome these problems

    Optimization of RPCs read-out panel with electromagnetic simulation

    Full text link
    With the upgrade of the RPCs [1]-[2] and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk. Through Electromagnetic Simulation, performed with CST Studio Suite, new panels design are tested and their crosstalk property are studied. The behavior of different type of panel is shown, in particular a panel with the decoupling strip connected through their characteristic impedance to the ground plane is simulated
    • …
    corecore